Home
Class 12
MATHS
The area of the region bounded by the ci...

The area of the region bounded by the circle `x^(2)+y^(2)=1` and the line `x+y=1` is :

Promotional Banner

Similar Questions

Explore conceptually related problems

The area of the smaller region bounded by the circle x^(2) + y^(2) =1 and the lines |y| = x +1 is

find the area of region founded by the circle x^(2)+y^(2)=1 and line x+y=1

The area of the region bounded by the curves y^(2)=4a^(2)(x-1) and the lines x = 1 and y = 4a, is

The area of the region bounded by the curve y = x ^(2) and the line y =16 is :

The area of the region bounded by the curve y = x^(2) and the line y = 16 is

The area of the region bounded by the curve C :y=(x+1)/(x^(2)+1) nad the line y=1 , is

The area of the region bounded by the curve C :y=(x+1)/(x^(2)+1) nad the line y=1 , is

The area of the region bounded by the curve y^(2)=4x, y-axis and the lines y=1, y=3 is