Home
Class 11
MATHS
किसी triangleABC में सिद्ध करे कि a^(...

किसी `triangleABC` में सिद्ध करे कि
`a^(2) (cos^(2) B - cos^(2) C) + b^(2) (cos^(2)C - cos^(2)A) + c^(2) (cos^(2)A - cos^(2)B) = 0.`

Promotional Banner

Similar Questions

Explore conceptually related problems

(iv) a^(2)(cos^(2) B - cos^(2)C) + b^(2) (cos^(2) C- cos^(2)A) + c^(2) (cos^(2)A- cos^(2)B)=0

In any Delta ABC, prove that :a^(2)(cos^(2)B-cos^(2)C)+b^(2)(cos^(2)C-cos^(2)A)+c^(2)(cos^(2)A-cos^(2)B)=0

In Delta ABC prove that a^2(cos^2B - cos^2C) + b^2(cos^2C - cos^2A) + c^2(cos^2A - cos^2B) = 0

a^2(cos^2B-cos^2C)+b^2(cos^2C-cos^2A)+c^2(cos^2A-cos^2B)=0 .

In /_\ABC prove that a^2(cos^2B-cos^2C)+b^2(cos^2C-cos^2A)+c^2(cos^2A-cos^2B) = 0

In any triangle ABC, prove that following: (cos^(2)B-cos^(2)C)/(b+c)+(cos^(2)C-cos^(2)A)/(c+a)+(cos^(2)A-cos^(2)B)/(a+b)=0

a cos ^(2) "" ( A) /(2) + b cos ^(2) "" ( B)/(2) = c cos ^(2) "" ( C) /(2) =

(vii) (b^(2) -c^(2)) cos 2A + (c^(2) -a^(2)) cos 2B + (a^(2) -b^(2)) cos 2C=0

(v) (b^(2)-c^(2))/(cos B + cos C) + (c^(2)-a^(2))/( cos C + cosA) + (a^(2)-b^(2))/(cos A + cos B)=0