Home
Class 11
MATHS
" (b) "sin A-sin B+sin C=4sin(A)/(2)cos(...

" (b) "sin A-sin B+sin C=4sin(A)/(2)cos(B)/(2)sin(C)/(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

If A, B, C are angles in a triangle , prove that sin A+ sin B -sin C =4sin. (A)/(2)sin. (B)/(2) cos. (C)/(2)

Theorem 4:sin A+sin B+sin C=4(cos A)/(2)(cos B)/(2)(cos C)/(2)

Assertion A:In/_ABC,sum(cos A)/(sin B sin C)=2 Reason R:In/_ABC,sin A+sin B+sin C=4(cos A)/(2)(cos B)/(2)(cos C)/(2)

If A+B+C=pi , prove that: "sin" A+"sin" B-"sin" C=4 "sin"(A)/(2)"sin"(B)/(2)"cos"(C)/(2) .

If A+B+C=pi then prove that cos A+cos B+cos C=1+4sin((A)/(2))*sin((B)/(2))*sin((C)/(2))

If A , B , C are angles in a triangle , then prove that sin A + sin B + sin C =4 cos. (A)/(2) cos . (B)/(2) cos .(C)/(2)

If A + B + C = 180^(@) , prove that sin A + sin B + sin C = 4 cos (A)/(2) cos"" (B)/(2) cos"" (C )/(2)

sin A + sin B-sin C = 4sin ((A) / (2)) sin ((B) / (2)) cos ((C) / (2))

sin A + sin B + sin C = 4cos ((A) / (2)) cos ((B) / (2)) cos ((C) / (2))