Home
Class 12
MATHS
[quad cm/minute." When "x=8cm" and "y=6c...

[quad cm/minute." When "x=8cm" and "y=6cm," find the rates of change of "(a)" the perimeter,and "(b)" the area of the rectangle."],[" 29.Prove that ":int_(0)^(a)f(x)dx=int_(0)^(a)f(a-x)dx," hence evaluate "int_(0)^(a)(x sin x)/(1+cos^(2)x)dx]

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: int_(0)^(2a)f(x)dx=int_(0)^(2a)f(2a-x)dx

int_(0)^(a)f(x)dx=int_(a)^(0)f(a-x)dx .

Prove that : int_(0)^(a) f(x) dx = int_(0)^(a) f(a-x)dx hence evaluate : int_(0)^(pi//2) (sin x)/(sin x + cos x) dx

Prove that int_(0)^(2a)f(x)dx=int_(0)^(a)[f(a-x)+f(a+x)]dx

Prove that int_(0)^(2a)f(x)dx=int_(0)^(a)[f(a-x)+f(a+x)]dx

Prove that int_(0)^(a)f(x)dx=int_(0)^(a)f(a-x)dx and hence evaluate int_(0)^(pi//2)(2log sin x-log sin2x)dx .

Prove that int_(0)^(a)f(x)g(a-x)dx=int_(0)^(a)g(x)f(a-x)dx .

Prove that int_0^a f(x)dx=int_0^af(a-x)dx , hence evaluate int_0^pi(x sin x)/(1+cos^2 x)dx

Prove that int_(0)^(2a)f(x)dx=int_(a)^(a)[f(a-x)+f(a+x)]dx

Prove that int_(0 )^(a) f (x) dx = int_(0)^(a) f (a -x) dx hence evaluate int_(0)^(pi/2) ( cos^5 x)/( cos^2 x+ sinn ^5 x) dx