Home
Class 12
MATHS
Function f(x)=x^3-27 x+5 is monotonicall...

Function `f(x)=x^3-27 x+5` is monotonically increasing when (a) `x<-3` (b) `|x|>3` (c) `xlt=-3` (d) `|x|geq3`

Promotional Banner

Similar Questions

Explore conceptually related problems

Function f(x)=x^3-27x+5 is monotonically increasing when

Function f(x)=x^3-27 x+5 is monotonically increasing when (a) x 3 (c) xlt=-3 (d) |x|geq3

Function f(x)=x^(3)-27x+5 is monotonically increasing when (a) x 3(c)x =3

Function f(x)=|x|-|x-1| is monotonically increasing when

f(x)=(x-2)|x-3| is monotonically increasing in

Function f(x) = sin x – cos x is monotonic increasing when -

Function f(x)=|x|-|x-1| is monotonically increasing when x 1 x<1 (d) 0

f(x) = (x - 2) |x - 3| is monotonically increasing in

Function f(x)=2x^3-9x^2+12 x+29 is monotonically decreasing when (a) x 2 (c) x >3 (d) 1ltxlt2

Function f(x)=2x^(3)-9x^(2)+12x+29 is monotonically decreasing when (a) x 2( c) x>3(d)'1