Home
Class 11
MATHS
If a, b, c are sides opposte to the angl...

If a, b, c are sides opposte to the angles A, B, C then which of the following is correct (1)`(b+c) cos (A/2)=a sin ((B+C)/2)` (2) `(b+c)cos ((B+C)/2)= a sin (A/2)`(3) `(b-c) cos((B-C)/2)= a cos A/2` (4) `(b-c) cos (A/2)=a sin ((B-C)/2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

In triangle ABC,a,b,c are the lengths of its sides and A,B,C are the angles of triangle ABC .The correct relation is given by (a) (b-c)sin((B-C)/(2))=a(cos A)/(2) (b) (b-c)cos((A)/(2))=as in(B-C)/(2)(c)(b+c)sin((B+C)/(2))=a(cos A)/(2)(d)(b-c)cos((A)/(2))=2a(sin(B+C))/(2)

If A, B, C are interior angle of triangle ABC then show that sin ((A+B)/2) + cos (( A+ B)/2) = cos (C/2) + sin (C/2)

a cos A + b cos B + c cos C = 2a sin B sin C

(cos ^(2) ((B-C)/( 2)) )/( (b+c)^(2))+( sin ^(2)((B-C)/( 2)) )/( (b-c)^(2))=

a.cos A + b.cos B + c.cos C = 2a sin B sin C

cos A + cos B + cos C = 1 + 4sin ((A) / (2)) sin ((B) / (2)) sin ((C) / (2))

If A+B+C=pi , prove that : sin ((B+C)/(2)) + sin ((C+A)/(2)) + sin( (A+B)/(2) )= 4cos ((pi-A)/(4)) cos( (pi-B)/(4)) cos((pi-C)/(4)) .

sin A + sin B + sin C = 4cos ((A) / (2)) cos ((B) / (2)) cos ((C) / (2))