Home
Class 9
MATHS
li(x rarr0)(e^(7x)-1)/(x)=......

li_(x rarr0)(e^(7x)-1)/(x)=...

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that lim_(x rarr0)(e^(7x)-1)/(x)=7

Using lim_(x rarr 0) (e^(x)-1)/(x)=1, deduce that, lim_(x rarr 0) (a^(x)-1)/(x)=log_(e)a [agt0].

lim_(x rarr0)((e^(x)-x-1)/(x))

The value of lim_(x rarr0)(e^(x)-1)/(x) is-

lim_(x rarr0)((a^(x)-1)/(x))=log_(e)a

The value of lim_(x rarr 0) ((e^(x)-1)/x)

lim_(x rarr0)(e^(sin x)-1)/(x)

lim_(x rarr0)(e^(sin x)-1)/(x)

Prove quad that quad (i) lim_(x rarr0)(a^(x)-1)/(x)=log_(e)aquad (ii) lim_(x rarr0)(log_(1+x))/(x)=1

find the the value of lim_(x rarr 0) (e^(3x)-1)/(2x) and lim_(x rarr 0) log(1+4x)/(3x)