Home
Class 11
MATHS
In triangle A B C , prove that sin(A/2)...

In triangle `A B C ,` prove that `sin(A/2)+sin(B/2)+sin(C/2)lt=3/2dot` Hence, deduce that `cos((pi+A)/4)cos((pi+B)/4)cos((pi+C)/4)lt=1/8`

Promotional Banner

Similar Questions

Explore conceptually related problems

In triangle ABC, prove that sin((A)/(2))+sin((B)/(2))+sin((C)/(2))<=(3)/(2) Hence,deduce that cos((pi+A)/(4))cos((pi+B)/(4))cos((pi+C)/(4))<=(1)/(8)

In triangle ABC , prove that sin .(A)/(2)+ sin. (B)/(2) -sin. (C)/(2)=-1+4 cos.(pi-A)/(4)cos. (pi-B)/(4)sin. (pi-C)/(4)

If A, B, C are the angles in a triangle then prove that sin .(A)/(2)+ sin . (B)/(2)+ sin .(C)/(2) =1 +4 sin((pi-A)/(4)) sin ((pi-B)/(4)) sin((pi-C)/(4))

If A+B+C=180^@ then prove that sin( A/2)+sin( B/2)+sin( C/2) = 1+4 sin( (pi-A)/4)sin((pi-B)/4)sin ((pi-C)/4)

If A+B+C=pi , prove that : sin ((B+C)/(2)) + sin ((C+A)/(2)) + sin( (A+B)/(2) )= 4cos ((pi-A)/(4)) cos( (pi-B)/(4)) cos((pi-C)/(4)) .

In DeltaABC, prove that: a) sin(A/2)+sin(B/2) +sin(C/2)= 1+4sin((pi-A)/4)sin((pi-B)/4).sin((pi-C)/4)

If A+B+C=pi , prove that : (sin ((B+C)/(2)) + sin ((C+A)/(2)) + sin( (A+B)/(2) )) equals (4cos ((pi-A)/(4)) cos( (pi-B)/(4)) cos((pi-C)/(4))) .

If A+B+C=pi, prove that sin((A)/(2))+sin((B)/(2))+sin((C)/(2))=1+4sin((pi-B)/(4))sin((pi-B)/(4))*sin((pi-C)/(4))

If A+B+C=pi then prove that cos((A)/(2))+cos((B)/(2))+cos((C)/(2))=4cos((pi-A)/(4))cos((pi-B)/(4))cos((pi-C)/(4))

If A+B+C=pi then prove that sin((A)/(2))+sin((B)/(2))+sin((C)/(2))-1=4sin((pi-A)/(4))sin((pi-B)/(4))sin((pi-C)/(4))