Home
Class 12
MATHS
The solution of the differential equatio...

The solution of the differential equation `log(dy/dx) = 4x-2y-2, y=1` when `x=1`, is (A) `2e^(2y+2)=e^(4x)+e^2` (B)`2e^(2y-2)=e^(4x)+e^2` (C)`2e^(2y+2)=e^(4x)+e^4` (D) `3e^(2y+2)=e^(3x)+e^4`

Promotional Banner

Similar Questions

Explore conceptually related problems

The solution of the differential equation (dy)/(dx) = e^(3x-2y) +x^(2)e^(-2y) ,is

The solution of the differential equation x(e^(2y)-1)dy + (x^2-1) e^y dx=0 is

The solution of the differential equation x(e^(2y)-1)dy + (x^2-1) e^y dx=0 is

The solution of the differential equation x(e^(2y)-1)dy+(x^2-1)e^y dx=0 is

y=2e^(2x)-e^(-x) is a solution of the differential equation

The solution of the differential equation (dy)/(dx) = (3e^(2x) + 3e^(4x) )/( e^(x) + e^(-x) ) is a) y= e^(3x) + C b) y=2e^(2x) + C c) y= e^(x) + C d) y= e^(4x) + C

The general solution of the differential equation (dy)/(dx) = e^(y) (e^(x) + e^(-x) + 2x) is a) e^(-y) = e^(x) - e^(-x) + x^(2) + C b) e^(-y) = e^(-x) - e^(x) - x^(2) + C c) e^(-y) = -e^(-x) - e^(x) - x^(2) + C d) e^(y) = e^(-x) + e^(x) + x^(2) + C

Let y(x) be the solution of the differential equation (x log x)(dy)/(dx)+y=2x log x,(x>=1) Then y(e) is equal to :(1)e(2)0(3)2(4)2e

The solution of the differential equation (e^(x^(2))+e^(y^(2)))y(dy)/(dx)+e^(x^(2))(xy^(2)-x)=0is

Directions: In the following questions, A statement of Assertion (A) is followed by a statement of Reason (R). Mark the correct choice as Solution of the differential equation (dy)/(dx)=e^(3x-2y)+x^2e^(-2y) is (e^(2y))/(2)=(e^(3x))/(3)+(x^2)/(2)+C Reason (R) : (dy)/(dx)=e^(3x-2y)+x^2e^(-2y) (dy)/(dx)=e^(-2y)(e^(3x)+x^2) separating the variables e^(2y)dy=(e^(3x)+x^2)dx int e^(2y)dy=int(e^(3x)+x^2)dx (e^(2y))/(2)=(e^(3x))/(3)+(x^3)/(3)+C .