Home
Class 11
MATHS
The value of lim(x->0) |x|^[cos x] i...

The value of `lim_(x->0) |x|^[cos x]` is ; `{[.]=`greatest integer function}

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(xto0)|x|^([cosx]) , [.] denotes greatest integer function is

The value of lim_(xto0)|x|^([cosx]) , [.] denotes greatest integer function is

The value of lim_(xto0)|x|^([cosx]) , [.] denotes greatest integer function is

The value of lim_(xto0)|x|^([cosx]) , [.] denotes greatest integer function is

The value of lim_(x rarr0)|x|^([cos x]),[*] denotes greatest integer function is

The value of lim_(x rarr0)[(sin x)/(x)] is (where [.] denotes greatest integer function)

The value of lim_(x->0) [x^2/(sin x tan x)] (Wherer [*] denotes greatest integer function) is

The value of lim_(xto0)(sin[x])/([x]) (where [.] denotes the greatest integer function) is

The value of lim_(xto0)(sin[x])/([x]) (where [.] denotes the greatest integer function) is