Home
Class 12
MATHS
The equation of the curve is y=f(x)dot ...

The equation of the curve is `y=f(x)dot` The tangents at `[1,f(1),[2,f(2)],a n d[3,f(3)]` make angles `pi/6,pi/3,a n dpi/4,` respectively, with the positive direction of x-axis. Then the value of `int_2^3f^(prime)(x)f^(x)dx+int_1^3f^(x)dx` is equal to (a)`-1/(sqrt(3))` (b) `1/(sqrt(3))` (c)` 0` (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

The equation of the curve is y=f(x)dot The tangents at [1,f(1),[2,f(2)],a n d[3,f(3)] make angles pi/6,pi/3,a n dpi/4, respectively, with the positive direction of x-axis. Then the value of int_2^3f'(x)f''(x)dx+int_1^3f''(x)dx is equal to

The equation of the curve is y=f(x)dot The tangents at [1,f(1),[2,f(2)],a n d[3,f(3)] make angles pi/6,pi/3,a n dpi/4, respectively, with the positive direction of x-axis. Then the value of int_2^3f^(prime)(x)f^('')dx+int_1^3f^('')dx is equal to -1/(sqrt(3)) (b) 1/(sqrt(3)) (e) 0 (d) none of these

If 2f(x) - 3 f(1//x) = x," then " int_(1)^(2) f(x) dx is equal to

If 2f(x)- 3f(1/x) = x then int_1^(e) f(x) dx =

The tangent to the graph of the function y=f(x) at the point with abscissae x=1, x=2, x=3 make angles pi/6,pi/3 and pi/4 respectively. The value of int_1^3f\'(x)f\'\'(x)dx+int_2^3f\'\'(x)dx is (A) (4-3sqrt(3))/3 (B) (4sqrt(3)-1)/(3sqrt(3)) (C) (4-3sqrt(3))/2 (D) (3sqrt(3)-1)/2

If f(x)=sqrt(x^2+6x+9) , then f^(prime)(x) is equal to (a) 1 for x<-3 (b) -1 for x<-3 (c) 1 for all x in RR (d) none of these