Home
Class 12
MATHS
y=sec^(-1)(1/(2x^(2)-1)), 0 lt x lt 1/sq...

`y=sec^(-1)(1/(2x^(2)-1)), 0 lt x lt 1/sqrt(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) in the following y= sec^(-1) ((1)/(2x^(2)-1)), 0 lt x lt (1)/(sqrt2)

Find (dy)/(dx)," if "y=sec^(-1) ((1)/(2x^(2)-1)), 0 lt x lt (1)/(sqrt2)

Differentiate sec^(-1) ((1)/(4x^(3)-3x)), 0 lt x lt (1)/(sqrt2)

y = sin^(-1)((1-x^2)/(1+x^2)), 0 lt x lt 1 .

y = cos^(-1)((1-x^2)/(1+x^2)), 0 lt x lt 1 .

y = cos ^(-1)((2x)/(1 +x^(2))),-1 lt x lt1

y = cos^(-1)((2x)/(1+x^2)), -1 lt x lt 1 .

If y=sec^(-1)(sqrt(1+x^(2))) , when -1 lt x lt 1, then find (dy)/(dx)