Home
Class 11
MATHS
If f(x+ y) = f(x) + f(y) for x, y in R a...

If `f(x+ y) = f(x) + f(y)` for `x, y in R` and `f(1) = 1`, then find the value of `lim_(x->0)(2^(f(tan x)-2^f(sin x)))/(x^2*f(sin x))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) is a polynomial satisfying f(x).f(y) = f(x) +f(y) + f(xy) - 2 for all x, y and f(2) = 1025, then the value of lim_(x->2) f'(x) is

If f(x)f(y) + 2 = f(x) + f(y) + f(xy) and f(1) = 2, f'(1) = 2, then find f(x).

If f ((x + 2y)/(3)) = (f (x) + 2f (y))/( 3) AA x, y in R and f '(0) = 1, f (0) = 2, then find f (x).

If f(x) is odd linear polynomial with f(1)=1 then lim_(x rarr0)(2^(f(cos x))-2^(f(sin x)))/(x^(2)f(sin x)) is

If f((x+2y)/(3))=(f(x)+2f(y))/(3)AA x,y in R and f'(0)=1,f(0)=2 then find f(x) .

If f (x/y)= f(x)/f(y) , AA y, f (y)!=0 and f' (1) = 2 , find f(x) .

If f (x/y)= f(x)/f(y) , AA y, f (y)!=0 and f' (1) = 2 , find f(x) .

If f (x/y)= f(x)/f(y) , AA y, f (y)!=0 and f' (1) = 2 , find f(x) .

If f (x/y)= f(x)/f(y) , AA y, f (y)!=0 and f' (1) = 2 , find f(x) .