Home
Class 10
MATHS
निम्नलिखित प्रत्येक प्रश्न (9 से 12) में...

निम्नलिखित प्रत्येक प्रश्न (9 से 12) में ज्ञात कीजिए कि क्या `g(x),p(x)` का एक गुणनखण्ड है ?
`p(x)=x^(4)+3x^(3)-4," "g(x)=x+2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Divide P(x)=2x^4+3x^3-2x^2-9x-12 by g(x)=x^2-3

2x-3y is a factor of: 2x-3yकिसका एक गुणनखण्ड है:

Check whether p(x) is a multiple of g(x) or not. p(x) = x^(3) -5x^(2) + 4x -3, g(x) = x-2

Divide p(x) by g(x), where p(x) = x+3x^(2) -1 and g(x) = 1+x .

In each of the following cases (Q.9-12), find whether g(x) is a factor of p(x) : p(x)=x^(4)+3x^(2)-4, " " g(x)=x+2

In each of the following cases (Q.9-12), find whether g(x) is a factor of p(x) : p(x)=x^(4)+3x^(2)-4, " " g(x)=x+2

Divide the polynomial p(x) by the polynomial g(x) and find the quotient and remainder in each of the following : i] p(x) = x^(3) - 3x^(2) + 5x - 3, g(x) = x^(2) - 2 ii] p(x) = x^(4) - 3x^(2) + 4x + 5, g(x) = x^(2) + 1 - x iii] p (x) = x^(4) - 5 x + 6 g(x) = 2 - x^(2)