Home
Class 6
MATHS
113." यदि "sin21^(@)=(x)/(y)." तब "sec21...

113." यदि "sin21^(@)=(x)/(y)." तब "sec21^(@)-sin69^(@)=?|_(122.)

Promotional Banner

Similar Questions

Explore conceptually related problems

If sin21^(@)=(x)/(y) , then sec21^(@)-sin69^(@) is equal to

If sin17^(@)=(x)/(y) then prove that sec17^(@)-sin73^(@)=(x^(2))/(ysqrt(y^(2)-x^(2)))

A =(cos 9^(@) - sin 9^(@))/(cos 9^(@) + sin 9^(@)) , B = (cos 21^(@) + sin 21^(@))/(cos21^(@) -sin21^(@)) and C= tan 20^(@) + tan40^(@) + sqrt(3)tan20^(@) tan40^(@) then descending order is:

sin21^(@)cos9^(@)-cos84^(@) cos6^(@)=

"sin" 51^(@)+cos 81^(@)=cos 21^(@) .

sin^(2)21^(@) + sin^(2) 69^(@) is equal to

A=(cos9^(@)-sin9^(@))/(cos9^(@)+sin9^(@)),B=(cos21^(@)+sin21^(@))/(cos21^(@)-sin21^(@)) and C=tan20^(@)+tan40^(@)+sqrt(3)tan20^(@)tan40^(@) then descending order is

A=(cos9^(@)-sin9^(@))/(cos9^(@)+sin 9^(@)), B=(cos21^(@)+sin21^(@))/(cos21^(@)-sin21^(@)) and C=tan 20^(@)+tan 40^(@)+sqrt(3)tan20^(@)tan40^(@) then descending order is