Home
Class 11
MATHS
Given log3a=p=logbc and logb9=2/(p^2) a...

Given `log_3a=p=log_bc ` and `log_b9=2/(p^2) and ` `log_9((a^4b^3)/c)=alphap^3+betap^2+gamma p+delta``(AA` p=R-{0})` then ``(alpha+beta+gamma+delta)` equals to :

Promotional Banner

Similar Questions

Explore conceptually related problems

log_(2)a=p,log_(4)b=p^(2),log_(c^(2))8=(2)/(p^(3)+1)* If log((c^(8))/(ab^(2)))=(alpha p^(3)-beta p^(2)-gamma p+delta) where alpha,beta,gamma,delta in N, then find the value of (alpha+beta+gamma+delta)

Given that log_(p)x=alpha and log_(q)x=beta, then value of log_((p)/(q))x equals

Let [1,3] be domain of f(x) .If domain of f(log_(2)(x^(2)+3x-2)) is [-alpha,-beta]uu[gamma ,delta]; alpha ,beta ,gamma ,delta>0 then the value of (alpha+beta+2 gamma+3 delta)/(17) is

If log_ax=alpha,log_bx=beta,log_c x=gamma and log_d x=delta ,xne1 and a,b,c, dne1 ,then log_(abcd) x equals

If log_ax=alpha,log_bx=beta,log_c x=gamma and log_d x=delta ,xne1 and a,b,c, dne1 ,then log_(abcd) x equals

If log_ax=alpha,log_bx=beta,log_c x=gamma and log_d x=delta ,xne1 and a,b,c, dne1 ,then log_(abcd) x equals

If log_ax=alpha,log_bx=beta,log_c x=gamma and log_d x=delta ,xne1 and a,b,c, dne1 ,then log_(abcd) x equals

Given log_(a) x=alpha, log _(b) x=beta, log_(c)x =gamma & log_(d) x=delta(x ne 1), a,b,c,d in R^(+)-{1}" then "log_(abcd)x then the value equal to:

log_(alpha)4=gamma,log_(beta)alpha=-1 and log_((1)/(2))beta=-1 then the value of the expression 4 alpha^(2)+beta^(2)+gamma^(2) equals to

Prove that log_a m+log_(a^2) m^2+log_(a^3) m^3+…..+log_(a^p) m^p=p log_a m