Home
Class 11
MATHS
sqrt(log3(3x^2)dotlog9(81 x))=log9x^3...

`sqrt(log_3(3x^2)dotlog_9(81 x))=log_9x^3`

Promotional Banner

Similar Questions

Explore conceptually related problems

log_(x)log_(2)log_(3)81

Find the value of x satisfying the equation, sqrt((log_3(3x)^(1/3)+log_x(3x)^(1/3))log_3(x^3))+sqrt((log_3(x/3)^(1/3)+log_x(3/x)^(1/3))log_3(x^3))=2

Find the value of x satisfying the equation, sqrt((log_3(3x)^(1/3)+log_x(3x)^(1/3))log_3(x^3))+sqrt((log_3(x/3)^(1/3)+log_x(3/x)^(1/3))log_3(x^3))=2

Find the value of x satisfying the equation, sqrt((log_3(3x)^(1/3)+log_x(3x)^(1/3))log_3(x^3))+sqrt((log_3(x/3)^(1/3)+log_x(3/x)^(1/3))log_3(x^3))=2

log_(x)(log_(9)(3^(x)-9))<1

int(log(3x)dx)/(log(9x)x)=

The sum of all the solution(s) of the equation (log_(9x)3)(log_((x)/(9))3)=log_((x)/(81))3 is equal to

Solve the following equation : log_3 x+log_9 (x^2)+log_27 (x^3)=3

The value of expression 3^sqrt(log_(27) 8)-2^sqrt(log_(32)243)-5^sqrt(log_(625) 81)+3^sqrt(log_9 25)+(sqrt2)^(log_2 9)+3^(log_4 25)-5^(log_4 9) , is less then

Solve for x :(log)_2(4(4^x+1))dotlog_2(4^x+1)=(log)_(1/(sqrt(2)))1/(sqrt(8)) .