Home
Class 11
MATHS
1+logx y=log2y...

`1+log_x y=log_2y`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x, y, z being positive |[1, log _x y,log _x z],[log _y x,1,log _y z],[log _z x,log _z y, 1]|=

Find the value of |(1,log_(x) y,log_(x) z),(log_(y) x,1,log_(y) z),(log_(z) x,log_(z) y,1)| if x,y,z ne 1

If x , y and z be greater than 1, then the value of |{:(1, log_(x)y, log_(x) z),(log_(y)x , 1 ,log_(y)z),(log_(z)x , log_z y , 1 ):}| =

Properties of logarithmic function Property (1) log_a 1=0 (2) log_a a=1 (3) log_a (xy)=log_a|x|+log_a|y| (4) log_a(x/y)=log_a |x|-log_a |y|

Using properties of determinant show that |(1,log_x y,log_x z),(log_y x,1,log_y z),(log_z x,log_z y,1)|=0

What is the value of abs((1,log_x y, log_x z),(log_y x,1,log_y z),(log_z x,log_z y, 1)) ?

Assuming that all logarithmic terms are define which of the following statement(s) is/are incorrect? (A)log_b(ysqrtx)=log_b y.(1/2log_b x) , (B) log_b x-log_b y=(log_b x)/(log_b y) , (C)2(log_b x+log_b y)=log_b (x^2y^2) , (D) 4log_b x-log_b y=log(x^4/y^-3)

Solve the system of equations log_2y=log_4(xy-2),log_9x^2+log_3(x-y)=1 .

Solve the system of equations log_2y=log_4(xy-2),log_9x^2+log_3(x-y)=1 .

Solve the system of equations log_2y=log_4(xy-2),log_9x^2+log_3(x-y)=1 .