Home
Class 12
PHYSICS
A particle moves in a plane along an ell...

A particle moves in a plane along an elliptic path given by `(x^(2))/(a^(2))+(y^(2))/(b^(2))=1` At point (0, b), the x-component of velocity is u. The y-component of acceleration at this point is-

Promotional Banner

Similar Questions

Explore conceptually related problems

A particle moves along the parabolic path x = y^2 + 2y + 2 in such a way that Y-component of velocity vector remains 5ms^(-1) during the motion. The magnitude of the acceleration of the particle is

A particle moves along the parabolic path x = y^2 + 2y + 2 in such a way that Y-component of velocity vector remains 5ms^(-1) during the motion. The magnitude of the acceleration of the particle is

A particle moves along a parabolic path y=-9x^(2) in such a way that the x component of velocity remains constant and has a value 1/3m//s . Find the instantaneous acceleration of the projectile (in m//s^(2) )

A particle moves along a parabolic path y=-9x^(2) in such a way that the x component of velocity remains constant and has a value 1/3m//s . Find the instantaneous acceleration of the projectile (in m//s^(2) )

A particle moves along a parabolic parth y = 9x^(2) in such a way that the x-component of velocity remains constant and has a value 1/3 ms ^(-1) . The acceleration of the particle is -

A particle moves along a parabolic parth y = 9x^(2) in such a way that the x-component of velocity remains constant and has a value 1/3 ms ^(-1) . The acceleration of the particle is -

Ellipticals will be the navel point of (x^(2))/(144)+(y^(2))/(169)=1

A particle moves along a path y = ax^2 (where a is constant) in such a way that x-component of its velocity (u_x) remains constant. The acceleration of the particle is

A particle moves along a path y = ax^2 (where a is constant) in such a way that x-component of its velocity (u_x) remains constant. The acceleration of the particle is