Home
Class 12
MATHS
For non-zero vectors veca and vecb if |...

For non-zero vectors `veca and vecb` if `|veca+vec b| lt |vec a-vec b|`, then `vec a and vec b` are

Promotional Banner

Similar Questions

Explore conceptually related problems

For non-zero vectors vec a and vec b if |vec a+vec b|<|vec a-vec b|, then vec a and vec b are

For non-zero vectors vec(a) and vec(b), " if " |vec(a) + vec(b)| lt |vec(a) - vec(b)| , then vec(a) and vec(b) are-

If vec a and vec b are two non- zero vectors such that | vec a + vec b| = |vec a - vec b| , then show that vec a and vec b are perpendicular.

For any two vectors veca and vec b show that |vec a. vec b| le |vec a||vec b| .

For any two vectors veca and vec b show that |vec a.vec b|le |vec a|.|vecb|

If vec a and vec b are non - zero vectors and |vec a+ vec b| = |vec a - vec b| , then the angle between vec a and vec b is

For two vectors veca and vec b , (veca. vecb)^2+(vec axxvec b)^2 =

If vec a and vec b are two non-zero vectors such that |vec a xxvec b|=vec a*vec b, then angle between vec a and vec b

Find |vec a| and |vec b| lf (veca + vec b)*(vec a-vec b)=8 and |vec a |=8|vec b| .