Home
Class 11
MATHS
(log2x)^2+4(log2x)-1=0...

`(log_2x)^2+4(log_2x)-1=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of x for which the equation 5*3^(log_3x)-2^(1-log_2x)-3=0

The value of x for which the equation 5*3^(log_3x)-2^(1-log_2x)-3=0

If alpha and beta are the roots of the equation (log_(2)x)^(2)+4(log_(2)x)-1=0 then the value of log_(beta)alpha+log_(alpha)beta equal to

The equation x^((3)/4 (log_2x)^2+log_2 x -(5)/(4))=sqrt(2) has :

The equation x^((3)/4 (log_2x)^2+log_2 x -(5)/(4))=sqrt(2) has :

If log_(2)(log_(3)(log_(4)(x)))=0 and log_(3)(log_(4)(log_(2)(y)))=0 and log_(4)(log_(2)(log_(2)(z)))=0 then the sum of x,y and z is _(-)

Number of real values of x satisfying the equation log_2(x^2-x)*log_2((x-1)/x)+(log_2x)^2=4 ,is (a) 0 (b) 2 (c) 3 (d) 7

Number of real values of x satisfying the equation log_2(x^2-x)*log_2((x-1)/x)+(log_2x)^2=4 ,is (a) 0 (b) 2 (c) 3 (d) 7

Number of real values of x satisfying the equation log_2(x^2-x)*log_2((x-1)/x)+(log_2x)^2=4 ,is (a) 0 (b) 2 (c) 3 (d) 7