Home
Class 12
MATHS
The value of tan^(-1)(e^(i theta)) is eq...

The value of `tan^(-1)(e^(i theta))` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

the value of e^(sinh^(-1)(tan theta)) is equal to:

If tan^(2)theta+cot^(2)theta=52, then the value of tan^(2)theta+cot^(2)theta is equal to

If tan^(3)theta+cot^(3)theta=52 , then the value of tan^(2)theta+cot^(2)theta is equal to :

If tan^(3)theta+cot^(3)theta=52 , then the value of tan^(2)theta+cot^(2)theta is equal to :

7.If tan theta=n tan phi, then maximum value of tan^(2)(theta-phi) is equal to

If sin(theta+phi)=n sin(theta-phi), then the value of (tan theta)/(tan phi) is equal to

Ifcos 2 theta+9sin2 theta+6sin theta+54cos theta=1 then the value of 100tan^(2)theta+9tan theta is equal to

If cos theta=(4)/(5) then the value of tan((theta)/(2)), can be equal to

If sec theta =x+1/(4x) , the value of sec theta + tan theta is equal to

If A=[[0,-tan(theta/2)],[tan(theta/2),0]](theta!=npi,n in Z),B=[[costheta,-sintheta],[sintheta,costheta]] and I=[[1,0],[0,1]], then the value of (2I)/(costheta+1) is equal to