Home
Class 11
MATHS
Let A=[[1,0,2],[2,0,1],[1,1,2]] then det...

Let A=`[[1,0,2],[2,0,1],[1,1,2]]` then `det((A-I)^(3)-4A)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

" 2.Let "A=[[1,0,2],[2,0,1],[1,1,2]]," then "(det((A-I)^(3)-4A))/(5)" is "

Let A=[[4,2],[-1,1]] .Then (A-2I)(A-3I) is equal to

If A=((1,0,0),(0,2,1),(1,0,3)) then (A-I)(A-2I)(A-3I)=

" Let "A" be a "3times3" matrix such that "A[[1,2,3],[0,2,3],[0,1,1]]=[[0,0,1],[1,0,0],[0,1,0]]" .Then "A^(-1)" is "

Let A=[[2,4],[-1,-2]] ,then the value of det(1+2A+3A^(2)+4A^(3)+5A^(4)+...+101A^(100)) equals (where I is the identity matrix of order 2)

For the matrix A=det[[1,1,11,2,-32,-1,3]], then that A^(3)-6A^(2)+5A+4I=0., find A^(-1)

Let A=[[2,2],[9,4]] and I=[[1,0],[0,1]] then value of 10 A^(-1) is-

Let A= [[1,0,0],[2,1,0],[3,2,1]] be a square matrix and C_(1), C_(2), C_(3) be three comumn matrices satisgying AC_(1) = [[1],[0],[0]], AC_(2) = [[2],[3],[0]] and AC_(3)= [[2],[3],[1]] of matrix B. If the matrix C= 1/3 (AcdotB). find sin^(-1) (detA) + tan^(-1) (9det C)