Home
Class 11
MATHS
Let l=lim(theta rarr0)(sin^(3)theta -tan...

Let `l=lim_(theta rarr0)(sin^(3)theta -tan^(3)theta)/(theta^(5))` and `m=lim_(theta rarr(pi)/(4))(((sin theta+cos theta)^(3)-2sqrt(2))/(1-sin2 theta))` .Find the value of `[l^(2)+m^(2)]` (where [x] denotes largest integer less than or equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If m=(lim_(theta rarr(pi)/(4))(((sin theta+cos theta)^(3)-2sqrt(2))/(1-sin2 theta))) then the value of m is

lim_(x rarr0)(sin^(3)theta*tan^(3)theta)/(theta^(6))

If m=lim_(a rarr pi)(((sin theta+cos theta)^(3)-2sqrt(2))/(1-sin2 theta)) ,then the value of m is-

lim_(theta rarr0)(3tan theta-tan3 theta)/(2 theta^(3))

lim_(theta rarr0)(1-cos theta)/(sin^(2)2 theta)

lim_(theta rarr0)((sin theta)/(sin((theta)/(2))))=2

lim_(theta rarr(pi)/(4))(1-tan theta)/(1-sqrt(2)sin theta)

lim_(theta rarr0)cot theta-csc theta

lim_(theta rarr(pi)/(6))(4cos^(2)theta-3)/(2sin theta-1)

lim_(theta rarr pi)((sqrt(2)-cos theta-sin theta)/((4 theta-pi)^(2))