Home
Class 12
MATHS
If |z1|!=1,|(z1-z2)/(1- bar z1z2)|=1, t...

If `|z_1|!=1,|(z_1-z_2)/(1- bar z_1z_2)|=1`, then

Promotional Banner

Similar Questions

Explore conceptually related problems

If |z_(1)|!=1,|(z_(1)-z_(2))/(1-bar(z)_(1)z_(2))|=1, then

If |z_1+z_2|=|z_1-z_2| and |z_1|=|z_2|, then (A) z_1=+-iz_2 (B) z_1=z_2 (C) z_=-z_2 (D) z_2=+-iz_1

If z_(1) and z_(2) are two complex numbers such that |(z_(1)-z_(2))/(z_(1)+z_(2))|=1, then

If z_(1) and z_(2) are two complex numbers such that |(z_(1)-z_(2))/(z_(1)+z_(2))|=1 , then

If |z_1-1|=Re(z_1),|z_2-1|=Re(z_2) and arg (z_1-z_2)=pi/3, then Im (z_1+z_2) =

If z_(1) and z_(2) two different complex numbers and |z_(2)|=1 then prove that |(z_(2)-z_(1))/(1-bar(z)_(1)z_(2))|=1

If z_1 and z_2 are two complex numbers for which |(z_1-z_2)(1-z_1z_2)|=1 and |z_2|!=1 then (A) |z_2|=2 (B) |z_1|=1 (C) z_1=e^(itheta) (D) z_2=e^(itheta)

Prove that |(z_1, z_2)/(1-barz_1z_2)|lt1 if |z_1|lt1,|z_2|lt1