Home
Class 12
MATHS
Consider a=x^(2)+3x+2,b=x^(2)+3x+4,c=x^(...

Consider `a=x^(2)+3x+2,b=x^(2)+3x+4,c=x^(2)+3x+8`; if a, b, c are in HP then product of possible values of x is

Promotional Banner

Similar Questions

Explore conceptually related problems

a=4x^3-8^2, b=7x^3-5x+3, c=3x^3+x-11 then find 2a-3b+4c

A=2x+3xy+7x^(2),B=3x-2y-5x^(2) and C=2xy-6x^(2)-3x . Find the value of A+B+C.

Events A, B, C are mutually exclusive events such that P(A)=(3x+1)/(3), P(B)=(1-x)/(4) " and " P(C )=(1-2x)/(2) . The set of all possible values of x are in the interval

If the maximum and minimum values of y=(x^(2)-3x+c)/(x^(2)+3x+c) are 7 and (1)/(7) respectively then the value of c is equal to (A)3(B)4(C)5 (D) 6

If (x+2) and (x-2) are factors of ax^4 + 2x - 3x^2 + bx - 4 , then the value of a + b is

If A=2x^(3)-3x^(2)-4x+5, B=2x^(2)-x^(3)+1 and C=x^(2)+x+2 , then find the degree of A+2B-C.