Home
Class 11
MATHS
The value of lim(n -> oo)(1.n+2.(n-1)+3....

The value of `lim_(n -> oo)(1.n+2.(n-1)+3.(n-2)+...+n.1)/(1^2+2^2+...+n^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_ (n rarr oo) (1.n + 2 * (n-1) + 3 * (n-2) + ... + n.1) / (1 ^ (2) + 2 ^ (2 ) + ... + n ^ (2))

underset n rarr oo n has the value: Lim_ (n rarr oo) (1 * n + 2 (n-1) +3 (n-2) + ...... + n.1) / (1 ^ ( 2) + 2 ^ (2) + 3 ^ (2) + ...... + n ^ (2))

The value of lim_( n to oo) ((1)/(n) + (n)/((n+1)^2) + (n)/( (n+2)^2) + ...+ (n)/( (2n-1)^2) ) is

lim_ (n rarr oo) (1.n + 2 (n-1) +3 (n-2) + ... + n.1) / (1 ^ (2) + 2 ^ (2) + 3 ^ ( 2) + ... + n ^ (2))

The value of lim_ (n rarr oo) [(1+ (1) / (n ^ (2))) (1+ (2 ^ (2)) / (n ^ (2))) ... (1+ (n ^ (2)) / (n ^ (2)))] ^ ((1) / (n))

The value of lim_(x to oo) (1 + 2 + 3 … + n)/(n^(2)) is

The value of lim_(n rarr oo)(1^(2)*n+2^(2)*(n-1)+......+n^(2)*1)/(1^(3)+2^(3)+......+n^(3)) is equal to

The value of lim_(n to oo) (2n^(2) - 3n + 1)/(5n^(2) + 4n + 2) equals

The value of lim_(n rarr oo)(((2n)(2n+1)(2n+2)...(4n))^((1)/(n)))/((n)^(2+(1)/(n))) is

lim_ (n rarr oo) (2 ^ (n) -1) / (2 ^ (n) +1)