Home
Class 12
MATHS
Let f:[0,1]rarr[0,oo) be a differentiabl...

Let `f:[0,1]rarr[0,oo)` be a differentiable with decreasing first derivative `&f(0)=0` ,then `int_(0)^(1)(dx)/(f^(2)(x)+1)` is (A) `<(tan^(-1)f(1))/(f'(1))` (B) `<(f(1))/(f'(1))` (C) `<(tan^(-1)f'(1))/(f'(1))` (D) `<=(f(1))/(f'(1))`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f:[0,1] to [0,prop) is differentiable function with decreasing first derivative suc that f(0)=0 and f'(x) gt 0 , then

If f(x)+f(2-x)=0 , then int_(0)^(2)(1)/(1+2^(f(x)))dx=

If f(x)+f(2-x)=0 , then int_(0)^(2)(1)/(1+2^(f(x)))dx=

If f(x)+f(3-x)=0 ,then int_(0)^(3)1/(1+2^(f(x)))dx=

Let f:R rarr[0,oo) be a differentiable function so that f'(x) is continuous function then int((f(x)-f'(x))e^(x))/((e^(x)+f(x))^(2))dx is equal to

Let f:(0, oo)rarr(0, oo) be a differentiable function such that f(1)=e and lim_(trarrx)(t^(2)f^(2)(x)-x^(2)f^(2)(t))/(t-x)=0 . If f(x)=1 , then x is equal to :

Let f(x) be a differentiable function in the interval (0, 2) then the value of int_(0)^(2)f(x)dx

Let f:(0,oo)rarr(0,oo) be a differentiable function satisfying,x int_(x)^(x)(1-t)f(t)dt=int_(0)^(x)tf(t)dtx in R^(+) and f(1)=1 Determine f(x)

Let f:R rarr R be a differentiable and strictly decreasing function such that f(0)=1 and f(1)=0. For x in R, let F(x)=int_(0)^(x)(t-2)f(t)dt

Let f(x) be a differentiable function such that f(x)=x^(2)+int_(0)^(x)e^(-t)f(x-t)dt then int_(0)^(1)f(x)dx=