Home
Class 12
MATHS
The value of (tan(i*log((a-ib)/(a+ib))))...

The value of `(tan(i*log((a-ib)/(a+ib))))` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of Arg [i ln ((a-ib)/(a+ib))] , where a and b are real numbers, is

Prove that tan(i log_(e)((a-ib)/(a+ib)))=(2ab)/(a^(2)-b^(2)) (where a,b in R^(+))

The value of a and b in (4+3i)/(3+i) = a + ib is

If sqrt(3)+i=(a+ib)(c+id), then find the value of tan^(-1)(b/a)+tan^(-1)(d/c)

If theta is the amplitude of (a+ib)/(a-ib) , then tantheta equals:

log(a+ib) when a>0,b<0 is

If a and b are real and i=sqrt(-1) then sin[i ln((a+ib)/(a-ib))] is equal to

If sqrt(a+ib)=x+iy , then value of sqrt(a-ib) is:

If a and b are real and i=sqrt(-1) then sin[i ln((a+ib)/(a-ib))] is equal to 1) (2ab)/(a^(2)-b^(2)) 2) (-2ab)/(a^(2)-b^(2)) 3) (2ab)/(a^(2)+b^(2)) 4) (-2ab)/(a^(2)+b^(2))