Home
Class 11
MATHS
If the normal to the curve y=f(x) at x=0...

If the normal to the curve `y=f(x)` at `x=0` be given by the equation `3x-y+3=0`, then the value of `lim_(x rarr0)x^(2){f(x^(2))-5f(4x^(2))+4f(7x^(2))}^(-1)`is `(-1)/(k)` then `k`=

Promotional Banner

Similar Questions

Explore conceptually related problems

If the normal to differentiable curve y=f(x) at x=0 be given by the equation 3x-y+3=0, then the value of lim_(x rarr0)(x^(2))/(f(x^(2))-5f(4x^(2))+4f(7x^(2))) is

If the equation of the normal to the curve y=f(x) at x =0 is 3x-y+3=0 then the value of lim_(x rarr0)(x^(2))/({f(x^2)-5f(4x^(2))+4f(7x^(2))}) is

If f'(0)=3 then lim_(x rarr0)(x^(2))/(f(x^(2))-6f(4x^(2))+5f(7x^(2))=)

If f'(x)=k,k!=0, then the value of lim_(x rarr0)(2f(x)-3f(2x)+f(4x))/(x^(2)) is

lim_(x rarr0^(+))(f(x^(2))-f(sqrt(x)))/(x)

lim_(x rarr0)((5x^(2)+1)/(3x^(2)+1))^(1/x^(2))

lim_(x rarr0)((1+5x^(2))/(1+3x^(2)))^(1/x^(2))=

lim_(x rarr0)(3x^(2)+5x-1)/(x^(2)+2x+6)

lim_(x rarr0)(e^(x)-1-x-((x^(2))/(2)))/(x^(3))=6k

Value of lim_(x rarr0)(ln(1+2x-3x^(2)+4x^(3)))/(ln(1-5x+6x^(2)-7x^(3))) is