Home
Class 12
MATHS
If log(2)7= a and log(3)2=b," then the v...

If `log_(2)7= a` and `log_(3)2=b`," then the value of `log_(14)84` is : (A) `(1+3b+2ab)/(ab-b)` (B) `(1+2b+ab)/(b+ab)` (C) `(1+a+b)/(a+b)`(D) `(1+b+ab)/(a+ab)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If "log"_(a) ab = x, then the value of "log"_(b)ab, is

If a=log_(245)175 and b=log_(1715)875, then the value of (1-ab)/(a-b) is

If log_(10)(ab^(3))=log_(10)(a^(2)b)=1, then the value of log_(10)(ab) is equal to

The value of log ab- log|b|=

If a^(2) + b^(2) = 7ab , then find the value of log_(2)((a+b)/(3))

If log_(4)5=a and log_(5)6=b, then log_(3)2 is equal to (1)/(2a+1) (b) (1)/(2b+1)(c)2ab+1(d)(1)/(2ab-1)

If a^(2) + b^(2) = 7ab , then the vlaue of log [(1)/(3) (a + b)] is