Home
Class 12
MATHS
y = tan^(-1)((sqrt(1+tan^(2)8)-1)/(tan8)...

`y = tan^(-1)((sqrt(1+tan^(2)8)-1)/(tan8))=`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve : 3 tan^(-1) (1/(2+sqrt(3)))-tan^(-1)(1/x) = tan^(-1) (1/3)

If 3tan^(-1)(2-sqrt(3))-tan^(-1)(x)=tan^(-1)((1)/(3)) then x=

tan^(-1) (1/5) + tan^(-1) (1/8) =

3(tan^(-1)1)/(2+sqrt(3))-(tan^(-1)1)/(2)=(tan^(-1)1)/(3)

Prove that 3tan^(-1)((1)/(2+sqrt(3)))-tan^(-1)((1)/(2))=tan^(-1)((1)/(3))

If tan^(-1)(sqrt(1+x^(2)-1))/(x)=4^(0) then x=tan2^(0)(b)x=tan4^(0)x=tan(1)/(4)^(0)(d)x=tan8^(0)

tan^(-1)((sqrt(2)+1)/(sqrt(2)-1)) - tan^(-1)(sqrt(2)/2) =

tan^(-1)(1/7)+tan^(-1)(1/9)+tan^(-1)(1/8)

Prove that : tan^(-1)((1)/(2))+tan^(-1)((1)/(5))+tan^(-1)((1)/(8))=(pi)/(4)

The value of tan^(-1)((1)/(3))+tan^(-1)((2)/(9))+tan^(-1)((4)/(33))+tan^(-1)((8)/(129))+...n terms is: