Home
Class 11
MATHS
If the rank of the matrix [[4,2,1-x],[5...

If the rank of the matrix `[[4,2,1-x],[5,k,1],[6,3,1+x]]` is 2 then
.k=`(5)/(2)`,x=`(1)/(5) `
k=`(5)/(2)`,`x!=(1)/(5)`
k=`1/5`, x=`5/2`
none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If x,y,z are in AP with common difference d and the rank of the matrix det[[5,5,x5,6,y6,k,z]] is 2, then

If (x-4)/(x^(2)-5x-2k)=(2)/(x-2)-(1)/(x+k), then

((2x-1)/((x-1)(2x+3))=(1)/(5(x-1))+(k)/(5(2x+3))rArr k=

If x is real and k=(x^(2)-x+1)/(x^(2)+x+1) then: (A) (1)/(3)<=k<=3(B)k<=5(C)k<=0(D) none

If 2 (3)/(4) - (5)/(8) + (-5)/(12) + 1 (1)/(6) = k, then find k.

The lines (x-2)/(1)=(y-3)/(1)=(z-4)/(-k) and (x-1)/(k)=(y-4)/(2)=(z-5)/(1) are coplanar, if

A=[[1,1,3],[5,2,6],[-2,-1,-3]] is a nilpotent matrix of index K .Then K=

Coefficient of x^4 in the expansion (1 + x - x^2)^5 is k then |k| .

If x^(2)+x+1 is a factor of the polynomial 3x^(3)+8x+3+5k, then the value of k is 0 (b) (2)/(5)( c) (5)/(2)(d)-1

if the lines (x - 1)/(-3) = ( y - 2)/(2k) = ( z -3)/(2) and (x -1) /(3k) = ( y - 5)/(1) = (z - 6 ) /(-5) are at night angle , then find the value of k .