Home
Class 12
MATHS
The coefficient of variation of numbers ...

The coefficient of variation of numbers 1,2,3,...,...,n is
(1) `sqrt((3(n-1))/((n+1)))*100`
(2) `sqrt((n-1)/(3(n+1)))*100`
(3) `sqrt((n+1)/(3(n-1)))*100`
(4) None of these

Promotional Banner

Similar Questions

Explore conceptually related problems

(2.3^(n+1)+7.3^(n-1))/(3^(n+1)-2((1)/(3))^(1-n))=

lim_(n to oo)(1)/(n)(1+sqrt((n)/(n+1))+sqrt((n)/(n+2))+....+sqrt((n)/(4n-3))) is equal to:

lim_(n rarr oo)(sin(1)/(sqrt((n))))((1)/(sqrt(n+1)))^(+(1)/(sqrt(n+2))+(1)/(sqrt(n+2)))

For all n in N,1+(1)/(sqrt(2))+(1)/(sqrt(3))+(1)/(sqrt(4))++(1)/(sqrt(n))

lim_(ntooo)1/n[1+sqrt(n/(n+1))+sqrt(n/(n+2))+sqrt(n/(n+3))+………..+sqrt(n/(n+3(n-1)))]=

lim_ (n rarr oo) (3) / (n) [1 + sqrt ((n) / (n + 3)) + sqrt ((n) / (n + 6)) + sqrt ((n) / (n +9)) + ...... + sqrt ((n) / (n + 3 (n-1)))

lim_(n rarr oo)[(1)/(sqrt(2n-1^(2)))+(1)/(sqrt(4n-2^(2)))+(1)/(sqrt(6n-) 3^(2)))+...+(1)/(n)]

If the major axis is n times the minor axis of the ellipse,then eccentricity is 1) (sqrt(n-1))/(n) 2) (sqrt(n-1))/(n^(2)) 3) (sqrt(n^(2)-1))/(n^(2)) 4) (sqrt(n^(2)-1))/(n)

lim_(n rarr0)(sqrt(1+n^(2))-sqrt(1-n+n^(2)))/(3^(n)-1)