Home
Class 12
MATHS
If F(x)=int(e^(2x))^(e^(3x))(t)/(log(e)t...

If `F(x)=int_(e^(2x))^(e^(3x))(t)/(log_(e)t)dt,` then the first derivative of `F(x)` with respect to `ln x` at `x=ln2` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=e^(sin(log cos x)) and g(x)=log cos x , then what is the derivative of f(x) with respect to g(x) ?

f(x) = int_(x)^(x^(2))(e^(t))/(t)dt , then f'(t) is equal to :

If f(x)=int_(0)^(x)e^(-t)f(x-t)dt then the value of f(3) is

f(x)=int_(e^(x))^(e^(-x))ln((1)/(t))dt , then which of following are correct?

If F(x) =int_(x^(2))^(x^(3)) log t dt (x gt 0) , then F'(x) equals

The derivative of f(x)=int_(x^(2))^(x^(3))(1)/(log_(e)(t))dt,(x>0), is

If f(x)=int_(1)^(x)(ln t)/(1+t)dt, then

If f(x)= int_(x)^(x^(2))1/((log t)^2)dt ,x ne 1 then f(x)is monotomically