Home
Class 12
MATHS
The incetre of the triangle formed by th...

The incetre of the triangle formed by the lines `x cos alpha+y sin alpha=pi, x cos beta+y sin beta=pi, x cos gamma+y sin gamma=pi` is `(h,k)` then `h+k=`

Promotional Banner

Similar Questions

Explore conceptually related problems

The orthocentre of triangle formed by (a cos alpha,a sin alpha),(a cos beta,a sin beta),(a cos gamma,a sin gamma) is

Find the area of the triangle whose vertices are : (a cos alpha, b sin alpha), (a cos beta, b sin beta), (a cos gamma, b sin gamma)

If x cos alpha + y sin alpha = x cos beta + y sin beta = 2a then cos alpha cos beta =

If (0,0) is orthocentre of triangle formed by A(cos alpha,sin alpha),B(cos beta,sin beta),C(cos gamma,sin gamma) then /_BAC=

Prove that the area of the parallelogram formed by the lines x cos alpha+y sin alpha=p,x cos alpha+y sin alpha=q,x cos beta+y sin beta=r and x cos beta+y sin beta=sis+-(p-q)(r-s)csc(alpha-beta)

If origin is the orthocenter of a triangle formed by the points (cos alpha*sin alpha,0)*(cos beta,sin beta.0),(cos gamma,sin gamma,0) then sum cos(2 alpha-beta-gamma)=

If (0,0) is orthocentre of triangle formed by A(cos alpha,sin alpha),B(cos beta,sin beta),C(cos gamma,sin gamma) then /_BAC is

If x cos alpha + y sin alpha = x cos beta + y sin beta = a, 0

If origin is the orthocentre of the triangle with vertices A(cos alpha,sin alpha),B(cos beta,sin beta),C(cos gamma,sin gamma) then cos(2 alpha-beta-gamma)+cos(2 beta-gamma-alpha)+cos(2 gamma-alpha-beta)=