Home
Class 11
MATHS
If 2^(x)-2^(x-1)=4 then x^(x)=...

If `2^(x)-2^(x-1)=4` then `x^(x)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(5)=1(x!=1), then (x)/(1+x^(2))+(x^(2))/(1+x^(4))+(x^(3))/(1+x)+(x^(4))/(1+x^(3))

Solve :(x+(1)/(x))^(2)-(3)/(2)(x-(1)/(x))=4 when x!=0

If x^(2)+3x+1=0 then find x^(3)+(1)/(x^(3)),x^(4)+(1)/(x^(4)),x^(2)-(1)/(x^(2)),x^(2)+(1)/(x^(2))

5cos^(-1)((1-x^(2))/(1+x^(2)))+7sin^(-1)((2x)/(1+x^(2)))-4tan^(-1)((2x)/(1-x^(2)))-tan^(-1)x=5pi , then x is equal to

Without expanding,show that the value of each of the determinants is zero: |(2x^(2)+2^(-x))^(2)quad (2^(x)-2^(-1))^(2),1(3^(x)+3^(-1))^(2),(3^(x)-3^(-x))^(2),1(4^(x)+4^(-x))^(2),(4^(x)-4^(-x))^(2),1]|

If x^(4)+(1)/(x^(4))=194, find x^(3)+(1)/(x^(3)),x^(2)+(1)/(x^(2)) and x+(1)/(x)

If x^(4)+(1)/(x^(4))=194, find x^(3)+(1)/(x^(3)),x^(2)+(1)/(x^(2)) and x+(1)/(x)

If x+(1)/(x)=3, calcuate x^(2)+(1)/(x^(2)),x^(3)+(1)/(x^(3)) and x^(4)+(1)/(x^(4))

The number of real roots of sin(2^(x))cos(2^(x))=(1)/(4)(2^(x)+2^(-x)) is