Home
Class 11
MATHS
If bar(a)=6bar(i)+sin^(2)thetabar(j)+2ba...

If `bar(a)=6bar(i)+sin^(2)thetabar(j)+2bar(k)&bar(b)=cosec^(2)thetabar(i)+6bar(j)-bar(k)`, then the minimum value of the scalar product of `bar(a)&bar(b)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If the vectors bar(a)=-2bar(i)+3bar(j)+ybar(k) and bar(b)=xbar(i)-6bar(j)+2bar(k) are collinear, then the value of x+y is

If bar(a)=2bar(i)+bar(j)+2bar(k),bar(b)=5bar(i)-3bar(j)+bar(k), then the length of the component vector of b perpendicular to a is

If the vectors bar(a)=-2bar(i)+3bar(j)+ybar(k) and bar(b)=xbar(i)-6bar(j)+2bar(k) are collinear,then the value of x+y is

If bar(a)=2bar(i)-3bar(j)+6bar(k) , bar(b)=-2bar(i)+2bar(j)-bar(k) and k =(the projection of bar(a) on bar(b)) /(the projection of bar(b) on bar(a)) then the value of 3k=

If bar(a)=2bar(i)-3bar(j)+6bar(k), bar(b)=-2bar(i)+2bar(j)-bar(k) and lambda=(the projection of bar(a) on bar(b))/( the projection of bar(b) on bar(a)) then the value of lambda is

If bar(a)=bar(i)+bar(j)+bar(k) , bar(b)=bar(i)+2bar(j)+3bar(k) then a unit vector perpendicular to both vectors (bar(a)+bar(b)) and (bar(a)-bar(b)) is

If bar(a)=bar(i)+2bar(j)+bar(k),bar(b)=2bar(j)+bar(k)-bar(i), then component of bar(a) perpendicular to bar(b) is

If bar(a)=bar(i)+bar(j)-2bar(k) then sum[(bar(a)xxbar(i))xxvec j]^(2)=

If bar(a)=2bar(i)-3bar(j)+5bar(k),bar(b)=-bar(i)+4bar(j)+2bar(k) then find bar(a)timesbar(b) and unit vector perpendicular to both bar(a) and bar(b) .

If bar(a)=a_(1)bar(i)+b_(1)bar(j)+c_(1)bar(k),bar(b)=a_(2)bar(i)+b_(2)bar(j)+c_(3)bar(k) ,then bar(a)*bar(b)