Home
Class 12
MATHS
The value of int(-(1)/(3))^((1)/(3))([x]...

The value of `int_(-(1)/(3))^((1)/(3))([x]+log_(e)((1+x)/(1-x)))dx` is `([*]rarr` G.I.F )

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(1)^(e)(1)/(x)(1+log x)dx is

The value of int_(-1)^(1) log ((x-1)/(x+1))dx is

int x log_(e)(1+x)dx

The value of the integral int_(1)^(2)e^(x)(log_(e)x+(x+1)/(x))dx is

int_(1//3)^(3)(1)/(x)log_(e)(|(x+x^(2)-1)/(x-x^(2)+1)|)dx is equal to

int_(1)^(3)(log x)/(x)dx

The value of the integral int_(-1)^(1)log_(e)(sqrt(1-x)+sqrt(1+x))dx is equal to :

int((log_(e)(x+1))/((x+1)dx)

int_(-1)^1 log((3-x)/(3+x)) dx

The value of int_(log1//2)^(log2)sin{(e^(x)-1)/(e^(x)+1)}dx is equal to