Home
Class 12
MATHS
lim(x rarr0)[(99tan x sin x)/(x^(2))]= W...

`lim_(x rarr0)[(99tan x sin x)/(x^(2))]`= Where [.] denotes the greatest integer function

Promotional Banner

Similar Questions

Explore conceptually related problems

If p= lim_(x rarr0^(+))[(3sin x)/(x)] ,q= lim_(x rarr0^(+))[(3x)/(sin x)] ,r= lim_(x rarr0^(+))[(tan x)/(x)] and s=lim_(x rarr0^(+))[(3tan x)/(x)] where [.] denotes the greatest integer function (A) pqrs=18 (B) pqrs=0 (C) p+q+r+s=9 (D) pq+rs+qr+sp=18

Given lim_(x rarr0)(f(x))/(x^(2))=2, where [.] denotes the greatest integer function,then lim_(x rarr0)[f(x)]=0lim_(x rarr0)[f(x)]=1lim_(x rarr0)[(f(x))/(x)] does not exist lim _(x rarr0)[(f(x))/(x)] exists

The value of lim_(x rarr0)([(100x)/(sin x)]+[(99sin x)/(x)]) , [.] denotes the greatest integer function,is

lim_(x rarr0)[min(y^(2)-4y+11)(sin x)/(x)](where[.] denotes the greatest integer function is 5(b)6(c)7(d) does not exist

lim_(x rarr0)(tan x)/(x)

lim_(x rarr0)(tan x)/(x)

The value of lim_(x rarr0)[(sin x)/(x)] is (where [.] denotes greatest integer function)

lim_(x rarr0)(tan x)/(sin^(2)x)

The value of the lim_(x rarr0)(x)/(a)[(b)/(x)](a!=0)(where[*] denotes the greatest integer function) is

The value of lim_(x rarr0)[(x^(2))/(sin x tan x)] (Wherer [*] denotes greatest integer function) is