Home
Class 13
MATHS
If lim(n rarr oo)(prod(k-1)^(n)(1+(k)/(n...

If `lim_(n rarr oo)(prod_(k-1)^(n)(1+(k)/(n)))^(1/n)` has the value of equal to `ke^(-1)` where `k in N,` find `k`

Promotional Banner

Similar Questions

Explore conceptually related problems

" If "Lt_(nrarroo) ((prod_(k=1)^(n)(1+(k)/(n))))^(1/n)" has the value of equal to "ke^(-1)" where "k in N" ,then the value of "K" is "

The value of lim_(n rarr oo)sum_(k=1)^(n)log(1+(k)/(n))^((1)/(n)) ,is

The value of Lt_(n rarr oo)prod_(r=1)^(n)((n+r)/(n))^((1)/(n)) equals

The value of lim_(n rarr oo)prod_(r=0)^(n)(1+(1)/(2^(2^(r)))) is

lim_ (n rarr oo) sum_ (k = 1) ^ (n) (k) / (n ^ (2) + k ^ (2)) is equals to

Find the value of lim_(n rarr oo)sum_(k=1)^(n)((k)/(n^(2)+k))

Evaluate lim_(n rarr oo)sum_(k=1)^(n)quad (k)/(n^(2)+k^(2))

lim_(n rarr infty) sum_(k=1)^(n) (n)/(n^(2)+k^(2)x^(2)),x gt 0 is equal to

lim_ (n rarr oo) (1) / ((n) ^ ((1) / (n))) is equal to

lim_ (n rarr oo) (1 + sum_ (k = 1) ^ (n) (3) / (nC_ (k))) ^ (n)