Home
Class 11
MATHS
Given a real valued function f such that...

Given a real valued function f such that `f(x)={tan^2[x]/(x^2-[x]^2) , x lt 0 and 1 , x=0 and sqrt({x}cot{x}) , x lt 0` where [.] represents greatest integer function then

Promotional Banner

Similar Questions

Explore conceptually related problems

Given a real valued function f such that f(x)={(tan^(2)[x])/(x^(2)-[x]^(2)),x<0 and 1,x=0 and sqrt({x}cot{x}),x<0 where [.] represents greatest integer function then

If f(x)=([x])/(|x|), x ne 0 , where [.] denotes the greatest integer function, then f'(1) is

If f(x)=([x])/(|x|),x ne 0 where [.] denotes the greatest integer function, then f'(1) is

lim_(x rarr0)(tan^(2)[x])/([x]^(2)), where [] represents greatest integer function,is

Find x satisfying [tan^(-1)x]+[cot^(-1)x]=2 where [| represents the greatest integer function.

lim_(xrarr0) [(100 tan x sin x)/(x^2)] is (where [.] represents greatest integer function).

Let [.] represent the greatest integer function and f(x)=[tan^(2)x] then :

If x^(2)+x+1-|[x]|=0, then (where [.] is greatest integer function) -

f:(2,3)rarr(0,1) defined by f(x)=x-[x], where [.] represents the greatest integer function.

f(x)=1+[cos x]x, in 0<=x<=(x)/(2) (where [.] denotes greatest integer function)