Home
Class 12
MATHS
The value of the integral inte^(3sin^(-1...

The value of the integral `inte^(3sin^(-1)x)((1)/(sqrt(1-x^(2)))+e^(3cos^(-1)x))dx` is equal to ` (2e^(3sin^(-1)x))/lamda + xe^(3pi/2)+c ` where `lamda=`

Promotional Banner

Similar Questions

Explore conceptually related problems

int((sin^(-1)x)^(3))/(sqrt(1-x^(2)))dx

int e^(sin^(-1)x)((log_(e)x)/(sqrt(1-x^(2)))+(1)/(x))dx is equal to

The value of the integral inte^(3sin^(-1)x)((1)/(sqrt(1-x^(2)))+e^(3cos^(-1)x))dx is equal to (where, c is an arbitrary constant)

The value of the integral I=int_(0)^((pi)/(2))(sin^(3)x -cos^(3)x)/(1+sin^(6)x cos^(6)x)dx is equal to

The value of the definite integral I=int_(-1)^(1)ln((2-sin^(3)x)/(2+sin^(3)x))dx is equal to

The value of the integral int_(-pi//2)^(pi//2)(sin^(2)x)/(1+e^(x))dx is

The value of the definite integral int_(0)^( pi)((1-x sin2x)e^(cos^(2)x)+(1+x sin2x)e^(sin^(2)x)) dx is equal to

int cos^(3)x.e^(log(sin x)) dx is equal to

Evaluate the following integrals: int(e^(x)[sqrt(1-x^(2))sin^(-1)x+1])/(sqrt(1-x^(2)))dx