Home
Class 11
MATHS
If there vectors bar(a)=bar(i)+bar(j)+ba...

If there vectors `bar(a)=bar(i)+bar(j)+bar(k),bar(b)=bar(i)-2a^(2)bar(j)+bar(a) ,bar(c)=bar(i)+(a+1)bar(j)-abar(k)` are linearly dependent vectors then the real 'a' lies in the interval.

Promotional Banner

Similar Questions

Explore conceptually related problems

If there vectors bar(a)=bar(i)+bar(j)+bar(k) , bar(b)=bar(i)-2a^(2)bar(j)+abar(k) , bar(c)=bar(i)+(a+1)bar(j)-abar(k) are linearly dependent vectors then the real a lies in the interval.

If three vectors bar(a)=bar(i)+bar(j)+bar(k),bar(b)=bar(i)-2a^(2)bar(j)+abar(k),bar(c)=bar(i)+(a+1)bar(j)-abar(k) are linearly dependent vectors then the real a lies in the interval.

bar(a)=bar(i)+bar(j)+bar(k),bar(b)=4bar(i)+3bar(j)+4bar(k),bar(c)=bar(i)+alphabar(j)+betabar(k) are linearly dependent vectors and |bar(c)|=sqrt(3) then

The reciprocal of bar(a) where bar(a)=-bar(i)+bar(j)+bar(k),bar(b)=bar(i)-bar(j)+bar(k),bar(c)=bar(i)+bar(j)+bar(k) is

undersetbar(a)bar(a)=2bar(i)+bar(j)+3bar(k),bar(b)=pbar(i)+bar(j)+qbar(k) and bar(b)xxbar(a)=bar(0)

undersetbar(a)bar(a)=2bar(i)+bar(j)+3bar(k),bar(b)=pbar(i)+bar(j)+qbar(k) and bar(b)xxbar(a)=bar(0)

bar(b)=bar(i)-2bar(j)-3bar(k),bar(b)=2bar(i)+bar(j)-bar(k),bar(c)=bar(i)+ 3bar(j)-2bar(k) then bar(a).(bar(b)xxbar(c))

bar(a)=2bar(i)+bar(i)+bar(k),bar(b)=bar(i)+2bar(j)+2bar(k),bar(c)=bar(i)+bar(j)+2bar(k) and bar(a)xx(bar(b)xxbar(c))=

Given bar(a)=bar(i)+2bar(j)+3bar(k),bar(b)=2bar(i)+3bar(j)+bar(k),bar(c)=8bar(i)+13bar(j)+9bar(k) , the linear relation among them if possible is

If bar(a)=2bar(i)-bar(j)-bar(k),bar(b)=bar(i)+2bar(j)-3bar(k) and bar(c)=3mp mubar(j)+5bar(k) are coplanar then mu root of the equation