Home
Class 12
MATHS
1^2C1-2^2C2+3^2C3- +(-1)^(n-1)n^2Cn=( 1)...

`1^2C_1-2^2C_2+3^2C_3- +(-1)^(n-1)n^2C_n=( 1)(n^2*2^(n+1))/(n+1)( 3)(2^(n+1))/(n-1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

C_0 - [C_1 -2.C_2+ 3.C_3-……..+(-1)^(n-1).n.C_n] =

(n+2)C_(0)(2^(n+1))-(n+1)C_(1)(2^(n))+(n)C_(2)(2^(n-1))- is equal to

Prove that C_(0)-(1)/(3)*C_(1)+(1)/(5)*C_(2) - …+(-1)^(n)*(1)/(2n+1)C_(n) =(2^(2n)(n !)^(2))/((2n+1)!)

Show that C_2 + 2C_3 + 3C_4 + ... + (n-1)C_n = 1+ (n-2) 2^(n-1)

c_(1)^(2)+2C_(2)^(2)+3C_(3)^(2)+....+nC_(n)^(2)=((2n-1)!)/ ([(n-1)!^(2)))

Find .^(n)C_(1)-(1)/(2).^(n)C_(2)+(1)/(3).^(n)C_(3)- . . . +(-1)^(n-1)(1)/(n).^(n)C_(n)

Find .^(n)C_(1)-(1)/(2).^(n)C_(2)+(1)/(3).^(n)C_(3)- . . . +(-1)^(n-1)(1)/(n).^(n)C_(n)

Prove that 1/(n+1)=(.^n C_1)/2-(2(.^n C_2))/3+(3(.^n C_3))/4- . . . +(-1^(n+1))(n*(.^n C_n))/(n+1) .

Prove that 1/(n+1)=(.^n C_1)/2-(2(.^n C_2))/3+(3(.^n C_3))/4- . . . +(-1^(n+1))(n*(.^n C_n))/(n+1) .