Home
Class 14
MATHS
If loge^x+loge^(1+x) =0 then x=...

If `loge^x+loge^(1+x) =0` then `x=`

Promotional Banner

Similar Questions

Explore conceptually related problems

The equation log_e x+ log_e (1+x)=0 can be written as

The integrating factor of the differential equation (dy)/(dx)(x log_e x)+y=2 log_e x is given by

int \ 1/x{loge^(e x)*loge^(e^2x) * loge^(e^3x)}dx

int \ 1/x{loge^(e x)*loge^(e^2x) * loge^(e^3x)}dx

If f(x) = log_e ((1-x)/(1+x)) , then f' (0) is

Find the area enclosed between the curves: y = log_e (x + e) , x = log_e (1/y) & the x-axis.

Find the area enclosed between the curves: y = log_e (x + e) , x = log_e (1/y) & the x-axis.

If log_e(1/(2)(a+b))=1/2(log_e a+log_e b), then a/(3b) =

y=log_e((1+x^2)/(1-x^2)) then find 225(y''-y') at x=1/2