Home
Class 11
MATHS
In a DeltaABC if (a+b)cos(B/2)=b(a+c)cos...

In a `DeltaABC` if `(a+b)cos(B/2)=b(a+c)cos(C/2)` then prove that the triangle `ABC` is isosceles.

Promotional Banner

Similar Questions

Explore conceptually related problems

In a Delta ABC if (a+b)cos((B)/(2))=b(a+c)cos((C)/(2)) then prove that the triangle ABC is isosceles.

If in a Delta ABC, c(a+b) cos B//2 = b(a+c) cos C//2 , prove that the triangle is isosceles.

If cos B=(sin A)/(2sin C) then prove that the triangle is isosceles.

In Delta ABC, if c(a+b) cos B//2=b (a+c) cos C//2 , then the triangle is

If in a triangle ABC, (bc)/(2 cos A) = b^(2) + c^(2) - 2bc cos A then prove that the triangle must be isosceles.

If in a triangle ABC, (bc)/(2 cos A) = b^(2) + c^(2) - 2bc cos A then prove that the triangle must be isosceles.

In a o+ABC, if cos C=(sin A)/(2sin B), prove that the triangle is isosceles.

If in Delta ABC, c(a+b) cos ""B/2=b (a+c) cos ""C/2, the triangle is

If in Delta ABC, c(a+b) cos ""B/2=b (a+c) cos ""C/2, the triangle is