Home
Class 12
MATHS
If A, B, C are the vertices of a triangl...

If `A, B, C` are the vertices of a triangle whose position vectros are `vec a,vec b, vec c and G` is the centroid of the `DeltaABC,` then `overline(GA)+overline(GB)+overline(GC) =`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A, B, C are the vertices of a triangle whose position vectors are vec a, vec b, vec c and G is the centroid of the triangle ABC, then vec GA + vec GB + vec GC =

If A, B, C are vertices of a triangle whose position vectors are vec a, vec b and vec c respectively and G is the centroid of Delta ABC, " then " vec(GA) + vec(GB) + vec(GC), is

If A,B and C are the vertices of a triangle with position vectors vec(a) , vec(b) and vec(c ) respectively and G is the centroid of Delta ABC , then vec( GA) + vec( GB ) + vec( GC ) is equal to

If A,B and C are the vertices of a triangle with position vectors vec(a) , vec(b) and vec(c ) respectively and G is the centroid of Delta ABC , then vec( GA) + vec( GB ) + vec( GC ) is equal to

If G is the point of concurrence of the median of triangleABC , then overline(GA)+overline(GB)+overline(GC)=

If G is centroid of the triangle ABC, then find vec(GA)+vec(GB)+vec(GC).

If G be the centroid of the triangle ABC, then prove that vec(GA)+vec(GB)+vec(GC)=vec(0).

If G is the centroid of a triangle ABC, prove that vec(GA)+vec(GB)+vec(GC)=vec(0) .

If G is the centroid of a triangle ABC, prove that vec(GA)+vec(GB)+vec(GC) = 0

If G denotes the centroid of Delta ABC, then write the value o vec GA+vec GB+vec GC