Home
Class 12
MATHS
The maximum value of y = sqrt((x-3)^(2...

The maximum value of
`y = sqrt((x-3)^(2)+(x^(2)-2)^(2))-sqrt(x^(2)-(x^(2)-1)^(2))` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The maximum value of expression |sqrt(sin^(2)x+2a^(2))-sqrt(2a^(2)-1-cos^(2)x)| , where a and x are real numbers, is

The maximum value of the expression |sqrt(sin^(2)x+2a^(2))-sqrt(2a^(2)-3-cos^(2)x)| where a and x are real numbers is

The maximum value of the expression |sqrt(sin^2x+2a^2)-sqrt(2a^2-1-cos^2x)| , where a and x are real numbers, is

Simplify : (sqrt(x^(2)+y^(2))-y)/(x-sqrt(x^(2)-y^(2)))-:(sqrt(x^(2)-y^(2))+x)/(sqrt(x^(2)+y^(2))+y)

If sqrt(a+ib)=x+iy, then possible value of sqrt(a-ib) is x^(2)+y^(2) b.sqrt(x^(2)+y^(2)) c.x+iydx-iy e.sqrt(x^(2)-y^(2))

If x is real,then the maximum value of y=2(a-x)(x+sqrt(x^(2)+b^(2)))

Simplify : (sqrt(x^(2)+y^(2))-y)/(x-sqrt(x^(2)-y^(2))) div (sqrt(x^(2)-y^(2))+x)/(sqrt(x^(2)+y^(2))+y)

y=tan^(-1)((sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2)))