Home
Class 10
MATHS
If alpha, beta are the zeros of the poly...

If `alpha, beta` are the zeros of the polynomial `x^(2) + 6x+2" then " (1/alpha+1/beta)=?`

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha, beta are the zeroes of the polynomial f(x) = x^2+x+1 , then 1/alpha+1/beta =

If alpha,beta are the zeroes of the polynomial x^(2)-p(x+1)-q , then (alpha+1)(beta+1)=

If alpha, beta are the zeroes of the polynomial f(x)= x^2+x+1 , then (alpha+1)(beta+1) =

If alpha and beta are the zeroes of the polynomial x^(2)+x+1, then (1)/(alpha)+(1)/(beta) =

If alpha, beta are the zeroes of the polynomial x^(2) - x - 6 then alpha^(2)beta^(2) = …………

If alpha and beta are the zeros of the polynomials x^(2) -5x+6 then (1)/(alpha) + ( 1)/(beta) is equal to .........

If alpha,beta are the zeroes of the polynomial f(x)=x^2+x+1 then 1/alpha+1/beta is____

If alpha, beta, gamma are the zeros of the polynomial x^(3)-6x^(2) -x+ 30 then (alpha beta+beta gamma + gamma alpha) = ?

If alpha and beta are the zeroes of the polynomial 2x^(2) - 13x + 6 , then alpha +beta is equal to

If a and beta are the zeroes of the polynomial x^(2) + 2x + 1 , then (1)/(alpha)+(1)/(beta) is equal to :